Maximizing Hydrogen Production by Cyanobacteria

Hermann Bothe*, Stefanie Winkelmann, and Gudrun Boison

Botanical Institute, The University of Cologne, Gyrhofstr. 15, D-50923 Cologne, Germany.

Fax: 00492214039. E-mail: Hermann.Bothe@uni-koeln.de

* Author for correspondence and reprint requests Z. Naturforsch. **63c**, 226–232 (2008); received October 31/December 5, 2007

nates from nitrogenase with the V-enzyme being more effective than the Mo-protein. This enhanced H₂-production in the presence of added H₂ and C₂H₂ should be of interest in approaches to commercially exploit solar energy conversion by cyanobacterial photosynthesis for the generation of molecular hydrogen as a clean energy source.

Key words: Hydrogenases, Alternative Nitrogenases, Photobiological Hydrogen Production in Cyanobacteria

When incubated anaerobically, in the light, in the presence of C₂H₂ and high concentrations of H₂, both Mo-grown *Anabaena variabilis* and either Mo- or V-grown *Anabaena azotica* produce large amounts of H₂ in addition to the H₂ initially added. In contrast, C₂H₂-reduction is diminished under these conditions. The additional H₂-production mainly original